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Abstract

The bottom slamming of a Very Large Floating Structure (VLFS) has been studied with theoretical and numerical

tools. The strategies adopted are: (i) a linear analysis for modeling the global motions of the platform, followed by (ii) a

fully nonlinear description for the bottom-slamming occurrence. Model (i) is used to examine the global behavior of a

VLFS at model and full scales, and model (ii) is applied to investigate the bottom-slamming features in terms of flow

evolution and induced pressure and stresses on the platform bottom. Excitation of hydroelastic coupling and

occurrence of air cushion are also discussed together with the challenges connected with scaling effects.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the behavior of a Very Large Floating Structure (VLFS) in waves is an important topic for the research

community, because of its practical applications to relevant problems such as floating airports. An overview of recent

numerical and experimental developments has been given by Ohmatsu (2005). An example of a VLFS pontoon-type

arrangement is: length of 5000m, width of 2000m, freeboard of 5m and draft of 1.5m; the operational water depth may

vary from shallow water to open ocean. The horizontal dimension being much larger than the vertical one makes the

elastic behavior significant and implies challenges for physical and numerical models (as discussed in Section 3.2). The

assessment of pontoon-type airports in the Japanese area motivated model tests and numerical investigations of this

kind of structure. The numerical models have been based on linear hydroelastic analysis of the wave-induced motions

and loads on the platform. A VLFS survival condition could be characterized by a significant wave height of 3.7m and

significant wave period of 6.1 s (Watanabe, 2002): therefore diffraction generally matters and may lead to the

occurrence of local phenomena such as bottom slamming in the wave-side portion of the platform. The slamming leads

to stresses that can be dangerous for the structural integrity, depending on the features of the VLFS. Moreover, the

vibrations induced by slamming may cause noise, and undermine the comfort of the passengers on a floating airport.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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They also modify the local slope of the platform and could compromise the effectiveness of the visual indicator of the

incident angle for a landing airplane (PAPI). 2-D experiments of bottom slamming have been performed by Yoshimoto

et al. (1997). Bottom-slamming induced pressures were examined theoretically by Takagi (1997) through a 2-D

flow solution.

The present study characterizes the global behavior of a VLFS and identifies some important features of slamming

phenomena. The structure is modeled as a barge, which is relevant to a pontoon-type VLFS. Head-sea conditions are

assumed. In these circumstances 3-D effects are limited due to the very large horizontal dimensions of VLFS. So the

problem is simplified as 2-D in the longitudinal plane of the platform and studied with theoretical and numerical tools.

One must note that the head-sea assumption would not be suitable to investigate runways installed parallel to the coast

line. In this case one could still model the flow as 2-D but along the transversal plane of the platform subjected to beam

sea conditions. Two kinds of investigation tools are applied: (i) a linear analysis to study the global motions of the

platform, based on the modal approach and a linear-beam model for the structure, and (ii) a fully nonlinear

hydrodynamic analysis combined with a linear-beam model to investigate the local bottom slamming. Progress of this

research activity has been reported for instance in Greco et al. (2003, 2006). The present work aims to document the

whole analysis in terms of the major findings and incorporates previous results with undocumented global and local

results. The novelties of this research are: the investigation of the VLFS structural-rigidity influence; the full-scale

analysis; the analysis of the bottom loads induced by slamming; the comparative study of hydroelastic effects during

slamming events involving an air-cavity entrapment when either a high-speed jet is formed or not.

The basic assumptions of the two complementary solution methods are briefly described in Section 2, the global

linear analysis and results are discussed in Section 3 and the local fully nonlinear study is presented in Section 4. Finally

a brief summary of conclusions is given.
2. General assumptions

This study deals with high Weber (larger than 104) and Reynolds (larger than 106) numbers, as in practical full-scale

cases, and unseparated flow conditions. Under these assumptions surface-tension effects are unimportant; the vorticity

remains concentrated in thin boundary layers; the viscous effects, connected with such thin layers, can be neglected.

In this framework, a potential-flow model is used to describe quantitatively the flow field, the wave field around the

VLFS and the induced pressure distribution. The investigation takes into account head regular incoming waves in finite

water depth over a flat horizontal sea floor. The problem is simplified analyzing only the center plane of the platform in

the wave direction, so the VLFS is seen as a 2-D barge that can deform according to the linear Euler-beam model. No

structural damping is modeled and current effects are not accounted for. The sketch of the problem and the main

geometrical parameters are given in Fig. 1.

In principle, the global behavior of the platform and the occurrence and features of local phenomena, such as

bottom slamming, affect each other and must be investigated within a coupled analysis. In the following, the coupling is

neglected and the global and local analyses are studied separately to gain fundamental insights of the involved

physical phenomena. This assumption becomes questionable when the platform motions are not small. In such

circumstances the coupling could be handled for instance using the solution algorithm in Fig. 2 described by Greco

et al. (2008).
3. Linear-global analysis: method and studies

Here the hydroelastic strategy developed to analyze the global behavior of a VLFS is presented and some results

discussed.

3.1. Solution method

Neglecting the occurrence of local nonlinear phenomena the global motions of a 2-D floating platform can be studied

through the equations

½Mij þ aijðo ¼ 1Þ�€xjðtÞ þ ½cij þ kij �xjðtÞ þ

Z t

0

hijðtÞ _xjðt� tÞdt ¼ F exci;iðtÞ (1)

for each mode amplitude xj , being j ¼ 1 ¼ surge, 2 ¼ heave, 3 ¼ pitch and 4 . . .Nbþ 3 ¼ beam modes. In Eq. (1), Mij ,

aijðo ¼ 1Þ, cij , kij and hij are, respectively, the generalized [e.g. see Faltinsen (1997)] mass, infinite-frequency added
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Fig. 1. Sketch of the problem and definition of the main parameters. Subdomains 1, 2 and 3 are used to solve the radiation and

diffraction problems in the linear-global analysis of Section 3.
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mass, hydrostatic restoring, structural stiffness and retardation-function matrices and F exci;i represent the generalized

excitation loads. The upper dots on xj stand for time derivatives.

The linear problem (1) can be solved efficiently in the frequency domain, assuming regular incoming waves with

frequency o and steady-state conditions, i.e. xjðtÞ ¼ R½x̃jðoÞ e�iot�. The introduction of these assumptions in Eq. (1)

leads to

f�o2½Mij þ aijðoÞ� � io bijðoÞ þ cij þ kijgx̃jðoÞ ¼ F̃exci;i, (2)

where F exci;iðtÞ ¼ R½F̃exci;iðoÞ e�iot�. To solve the problem all the terms of the equations of motion must be evaluated.

The generalized mass, structural-stiffness and hydrostatic restoring coefficients are known using structural and

dimensional details of the platform while the hydrodynamic terms are found solving the radiation and diffraction

problems for the velocity potentials

jjðx; z; tÞ ¼ R½fjðx; zÞ _xjðtÞ� ¼ R½fjðx; zÞ x̃j e
�iot ð�ioÞ�; j ¼ 0; . . . ;Nb þ 3, (3)

where j ¼ 0 and j40 represent, respectively, the diffraction and radiation potentials. In expressions (3) the variable

separation principle has been applied. The related problems are solved following the strategy suggested in Fig. 1: the

fluid domain is split into the sub-regions d ¼1, 2 and 3, respectively, upstream, under and downstream of the platform,
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and in each of them a local velocity potential is defined. The diffraction and radiation problems are analyzed

simultaneously using the solution algorithm developed by Johansson (1989) for a rigid 2-D barge and extended here

with the inclusion of a linear elastic beam model. As for the rigid case, the radiation problem associated to each beam

mode ðj43Þ requires the estimate of a velocity potential satisfying homogeneous boundary conditions everywhere but

on the body where the normal velocity is consistent with the velocity of deformation of the jth mode. Once the velocity

potentials are known for all the problems, the added-mass coefficients, the damping coefficients and the excitation

forces can be calculated.

The effectiveness of the method has been successfully verified in terms of frequency-dependent added-mass and

damping coefficients and motion amplitudes, and validated in terms of displacement and pressure amplitude

distributions along the platform. Most of the results have been reported in Greco et al. (2006).

3.2. Physical investigations

A parameter study of the VLFS global behavior has been carried out by examining the four cases given in Table 1.

The implications for bottom-slamming occurrence are also pointed out.

The first two studies concern 3-D model tests, respectively, by Yago and Endo (1996) and Ohta and Ohmatsu (1998).

The former studied the interactions of the Mega-float phase I model with regular incoming waves with wavelength-to-

platform width ratio l=W 2 ½1; 5�; the latter tested a runway model using l=W 2 ½0:25; 0:9�. The third study corresponds

to the 2-D experiment by Yoshimoto et al. (1997) on two VLFS models, A and B, designed with different stiffnesses.

Yoshimoto et al. take the draft, D, as main reference parameter while the length of their model does not respect the

typical L=D ratio and is much smaller than it should be. So, for this experiment the incoming wavelength must be

referred to the draft, in particular l=D ’ 60 would correspond to survival conditions. The last study deals with a full-

scale VLFS concept. The structural and geometrical properties have been taken from Yoshimoto et al. (1997) and the

platform is modeled as a cantilever beam with restrained rigid body motions, as it would be the case for a floating

structure connected rigidly to the sea floor on the lee side.

The following investigation is based on results in Greco et al. (2006) coupled with new results related to the influence

of the VLFS structural features and to the full-scale analysis.

3.2.1. Influence of 3-D effects and structural damping

Generally, 3-D effects and structural damping have to be considered in reality. The platform displacements measured

by Yago and Endo (1996) show a good agreement with 3-D BEM results (see Fig. 3, where L is the length of the

platform, w is the displacement and a is the wave amplitude). The 3-D results were obtained assuming zero structural

damping [private communication from Taghipour; the solver is described in Taghipour et al. (2006)]. This indicates a

negligible role of structural damping in these model tests. The comparison with the present 2-D solution highlights that

the 3-D effects are limited in the upwave region, cause a lower response amplitude further downstream along the

platform and they reduce the importance of higher modes. Globally the poorest 2-D results were obtained for l=W ¼ 2

(i.e. l=L ¼ 0:4) and the discrepancies reduce for larger or smaller wavelengths. The same improvement in 2-D results for

smaller l=W was found for study No. 2 which examined incoming waves with l=Wo1. In this case no 3-D numerical

results were available so no further comments can be made.

For a typical full-scale VLFS one should expect l=W51, and in this wavelength range the analysis suggests that a

2-D model could be a reasonable tool for investigating in the case of head-sea conditions, especially on the upwave end

where slamming phenomena can occur. The effect of high elastic modes should therefore be considered only in the

upstream portion of the VLFS. Fig. 4 shows that, for incoming waves with l ¼ 0:1L, the 24th mode (corresponding to
Table 1

Experimental studies examined. Study 1: Yago and Endo (1996). Study 2: Ohta and Ohmatsu (1998). Study 3: Yoshimoto et al. (1997).

Study 4: full-scale VLFS concept

Study Length (L) (m) Draft (D) (m) Bending stiffness (EI) ðNm2Þ Water depth (h) (m) Width (W) (m)

1 300 0.5 46:892� 1010 58.5 60

2 1200 1.0 1:0704� 1013 20 240

3 5.3 0.027 A: 19 676, B: 288 551 2 –

4 5000 1.5 4:05� 109 20 –



ARTICLE IN PRESS

0

0.8

λ /L=0.8

0 0.4 0.8
0

0.8

waveside

λ /L=1.0

x/L

0

0.8

|w
|/

a
|w

|/
a

|w
|/

a
|w

|/
a

|w
|/

a

Exp.:YagoandEndo(1996)
2DNum.:Presentmethod
3DNum.:Taghipour(privatecomm.)

λ /L=0.2

0

0.8

λ /L=0.4

0

0.8

λ /L=0.6

Fig. 3. Global investigations: study 1 of Table 1. Beam displacement for different l=L ðL=W ¼ 5Þ.

10
0

0.2

0.4

0.6

λ /L

0.001

h /L

0.004

0.004
 0.004

ξ j
/a

Modes

0.004

Nb

20 30

30
8

8
8

30 0.1
0.1
0.1

0.01
0.01

Fig. 4. Global full-scale investigation. Mode amplitudes. Nb is the number of beam modes used.

M. Greco et al. / Journal of Fluids and Structures 25 (2009) 406–419410



ARTICLE IN PRESS
M. Greco et al. / Journal of Fluids and Structures 25 (2009) 406–419 411
the 21 beam mode) makes the largest contribution. The curve of the modal amplitude is affected by clear oscillations for

modes higher than the 10th. These are connected with numerical errors that arise when studying very long structures

(i.e. LbD and Lbh) because the corresponding radiation and scattering problems involve the estimates of hyperbolic

and trigonometric functions of large arguments. On the other hand, the high modes characterize the bottom structural

behavior in the upwave region and should be modeled there.

To avoid such errors and recover a better description of bottom-slamming events, here the following 2-D approach is

proposed. A low number of modes is used to describe the global structure, coupled with a local upstream analysis that

models the upwave portion of the platform with a high number of modes. In fact, for the examined case, Fig. 4 shows

that the use of Nb ¼ 8 modes avoids the oscillations and provides modal amplitudes consistent with those estimated

with 30 modes. The amplitude for the first eight modes is limited and smaller than 5% of the incoming wave amplitude

a. From the physical point of view, l ¼ 0:1L means a wavelength of 500m, which is quite a long wave. Survival

conditions would be characterized by much shorter waves with l ’ 0:012L (corresponding to the peak period). For

such wavelength, l ¼ 0:01L, the results in Fig. 4 show very limited elastic motions of the structure, with modal

amplitudes smaller than 0:0005a. This is consistent with what has already been discussed, and suggests that for such

wave conditions the bottom slamming could be investigated neglecting the global motions of the platform as a first step.

3.2.2. Influence of structural rigidity

The analysis of the two VLFS models used in study No. 3 furnishes some insights about the influence of structural

rigidity on the platform behavior in waves. The values of the Young modulus were not available from the model tests.

The lack was overcome assuming in the simulations Aluminum for model A and steel for model B. The amplification of

a factor of 15 in the rigidity is responsible for a reduction by a factor of three in the motions in the upwave portion of

the platform (see for example Fig. 5 for l=D ¼ 65). This is relevant in terms of bottom-slamming occurrence.
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The structural properties affect the resonance features. This is shown in Fig. 6 in terms of the displacement amplitude at

x ¼ 0:025L from the upwave end as a function of l=L for models A and B. It is seen in the figure that an increase in

rigidity leads to a reduction in the amplitude of motion. This suggests that adequate stiffening of the platform

would lead to very limited global motions in the case of incoming waves with l5L. It implies that slamming events

may occur on an almost fixed platform but the slamming occurrence could induce local deformations and affect the

global behavior.

Other sources of influence are analyzed only briefly in the following.

3.2.3. Dominant modes

Study No. 1 was used to investigate numerically the importance of the different modes on the global VLFS behavior

[see Greco et al. (2006)]. Varying l between 0:2L and L, the elastic modes were found always dominant with respect to

the rigid motions. However, as l=L reduces the maximum amplitude moves toward higher beam modes and its value

decreases. A higher number of elastic modes matters and they could couple with rigid modes, whenever allowed. The

actual value of the amplitude of the high modes could be reduced also by other factors, for instance by 3-D effects as

discussed above.

3.2.4. Influence of draft and water depth

The analysis confirmed a negligible direct effect of the draft, D, on the global behavior of a VLFS. However, D can

matter both directly and indirectly. For instance, it is strongly connected with the rigidity of the structure which affects

the platform motions, as discussed above. Furthermore, D influences the occurrence and features of bottom slamming.

To investigate the effect of water depth h, this was varied from 20 to 5m in study No. 4. The results did not show any

substantial difference in terms of modal amplitudes (see Fig. 4 for l=L ¼ 0:1). This suggests that the direct effect of the
water depth is limited. However, a smaller h modifies the incoming waves and may result in a different local interaction

with the platform, in particular in terms of occurrence and features of bottom-slamming events. This could lead to an

indirect effect on the global motions of the platform.
4. Local fully nonlinear analysis: method and studies

In the following, the occurrence and features of bottom slamming and subsequent local effects on the structure are

examined by means of a fully nonlinear analysis. Based on the results from the linear studies in Section 3, the rigid

motions are restrained and the elastic deflections are modeled only in the upstream portion of the platform. As a result

the platform length L does not affect the details of the flow in the upwave region and can be reduced to limit the CPU-

time requirements as long as it is chosen large enough with respect to the platform draft. Here L=D ¼ 120 is used. The

water depth is chosen to be sufficiently large (with respect to the incoming wavelengths studied) that it does not affect

the solution. As a consequence the parameters of the problem are: D, l (or alternatively the incoming wave period T)

and H.

4.1. Solution method

As shown in Fig. 1, the liquid domain OðtÞ is bounded by the free surface FS, the wetted surface of the 2-D VLFS,

BO, and an outer surface qOouter. The latter is formed by a flap wave-maker, WM, placed at 240D upstream of the

platform wave-side, the horizontal bottom and a downstream control surface. Incoming waves generated by WM are

damped out downstream of the VLFS using a numerical wave beach. This provides a limit on the fluid domain and

avoids unphysical wave reflection.

The flow evolution is analyzed in terms of the velocity potential jð~P; tÞ by fully retaining nonlinearities associated

with the motion of the free surface. Along the free and solid boundaries the kinematic condition limits the fluid particles

to have the same normal velocity as the corresponding geometrical points of the surface. The dynamic free-surface

condition requires that the pressure pðtÞ at the free surface is balanced by the instantaneous ambient pressure paðtÞ.

Usually pa coincides with the atmospheric pressure but becomes a time-varying pressure when for instance air

entrapment occurs. In such circumstances, it is assumed that there is no leakage and the air is modeled as an ideal gas in

adiabatic conditions with pressure paðtÞ and volume SðtÞ linked by

paðtÞ ¼ paðt0Þ
Sðt0Þ

SðtÞ

� �g
. (4)
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Here paðt0Þ and Sðt0Þ are, respectively, the pressure and the volume of the air cavity at the time instant t0 when the cavity

is formed and g ¼ 1:4. The pressure along BO is computed by the Bernoulli equation and the force follows by direct

pressure integration.

The problem is solved numerically using the Mixed Eulerian–Lagrangian strategy (Ogilvie, 1967) and adopting a

Lagrangian description to follow the FS evolution. At any time instant the boundary value problem (b.v.p.) for the

velocity potential is solved through the Boundary Element Method [BEM, Greco (2001)] knowing j along FS and its

normal derivative along the solid boundaries. The evaluation of the pressure along the body-wetted surface BO requires

the rate-of-change qj=qt of the velocity potential which is found by solving a problem formally equivalent to the b.v.p.

for j, in the case of a rigid platform. A standard fourth-order Runge–Kutta scheme is adopted to step forward in time

the evolution equations of the problem. A detailed description of the method can be found in Greco (2001).

In some circumstances, the water–body interactions may induce elastic deflections of the structure on spatial and time

scales such that the deflections in turn affect the fluid motion. When this occurs the fluid-dynamic and structural

problems should be coupled. To assess the importance of hydroelasticity in connection with bottom slamming, the

leading portion of the platform bottom is modeled as a linear Euler beam deforming according to the equation

m
q2w

qt2
þ EI

q4w

qz4
¼ �r

1

2
jrjj2 þ

qj
qt
�~g � ~P

� �
. (5)

Here w is the beam deformation at the location z and the right-hand-side gives the pressure in terms of the Bernoulli

equation. r is the water density, ~g is the vector of acceleration due to gravity, the vector ~P defines a point on the

deformed beam, m is the structural mass per unit length and EI is the beam bending stiffness. Assuming that at a given

instant of time the beam geometry w, the deflection velocity qw=qt and the other suitable boundary data along free and

rigid surfaces are known, then the b.v.p. for the velocity potential j can be solved. The hydrodynamic pressure forcing

the beam depends on qj=qt whose b.v.p. involves a non-homogeneous Robin condition along the elastic portion of the

platform [see Greco et al. (2004)]. Within the solution strategy, the transverse deformation wðz; tÞ is expressed in terms

of N beam dry modes and the solution is found in terms of the unknown time-dependent coefficients.

When bottom slamming occurs the solution algorithm shown in Fig. 7 is adopted. Typically the water hits the

upwave bottom end of the VLFS bottom. The angle between the free surface and the bottom, say b, is small and very

rapid changes of the wetted area are expected at the end. To avoid numerical instabilities and to handle accurately the

impact, a local high-speed analytical solution for a liquid wedge with half-angle b hitting a flat bottom is incorporated

in the global numerical method. The local strategy follows the work by Wagner (1932) and is documented in Faltinsen

et al. (2004). At the impact instant timp, the local solution is introduced at the water region near the upwave-bottom end

where the free-surface forms an angle b� � with the body surface, where �o1�. The time duration Dt of the analytical
Fig. 7. Fully nonlinear investigation. Solution algorithm for the bottom-slamming analysis.
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slamming is determined by deciding the maximum wetted length 2c ¼ 4V0Dt=3 tanðbÞ. Here V0 is the entry velocity

assumed constant and equal to the water impact velocity. The free-surface elevation at the time timp þ Dt is composed of

two parts: in the outer part, the free-surface particles are moved with the BEM velocity at time timp; in the inner domain,

the wave elevation is determined by the local solution while the velocity potential on FS is not affected by the impact

(i.e. the dynamic free-surface condition for the local problem is jimp ¼ 0) and its value at time timp þ Dt is obtained by

integrating the rate of change of j predicted by the BEM at time timp using an Euler time-stepping scheme. Once the

BEM and the local analytical solution are patched at the time timp þ Dt, the further flow evolution can be described

again by the BEM only. The latter includes the modeling of air compressibility in entrapped cavities and the

hydroelastic coupling (when of interest) with the structure.

4.2. Physical investigations

The bottom slamming has been partially investigated in Greco et al. (2003) for selected combinations of the incoming

wave parameters in the ranges H=D 2 ½3:2; 6:3� and Tðg=DÞ1=2 2 ½21:0; 31:1�. The cases were chosen to have water-entry

and exit phases with different severity. Here the main outcomes of the physical analysis are summarized and

incorporated with additional investigations related to the bottom pressure and evolution of the structural

stresses induced by slamming. The slamming scenarios with air entrainment are examined using the first two impacts

caused by incoming waves with H=D ¼ 4:9 and Tðg=DÞ1=2 ¼ 21:5, respectively, referred to as first and second impact in

the following.

4.2.1. General features

Within the wavelength range examined, the wave–structure interaction causes diffraction of the incident waves. In the

most severe cases, during water run-down the free surface reaches the bottom of the structure and turns rapidly around

the upwave-bottom end. To avoid numerical problems, in the simulations the edge is rounded with a radius of 0:2D.

This proved to have a negligible effect on the results [see e.g. Faltinsen et al. (2004)]. For small values of H=l the local

free surface is relatively flat while for higher values it has a large curvature and forms a small angle with the structure.

The resulting water-exit phase can be characterized by a relatively steep variation in the pressure distribution along the

structure. The maximum extension, say ld ;max, of the bottom emergence is a measure of the bottom area affected by

slamming and increases with H=D. The ld;max predicted by the present nonlinear-potential solver agrees well with the

measurements by Yoshimoto et al. (1997), as shown by Greco et al. (2003). This indicates a limited influence of vortex

shedding connected with cross-flow at the upwave-bottom end. The comparison with the linear solution by Yoshimoto

et al. (1997) for ld;max highlights the importance of nonlinear effects.

A new water rise-up phase counteracts the water-exit and may cause a water impact with the platform bottom. It is

associated with the entrapment of an air cavity for all the slamming events examined. In the present model the air is not

simulated before the impact. This can represent an error source in the prediction both of the shape and pressure of the

entrapped air and of the occurrence of air entrainment, i.e. the air could escape and prevent the formation of an air

cavity. Such error sources are directly connected with the single-phase strategy. However, 3-D effects may play a greater

role in realistic sea conditions.

For all the analyzed bottom-slamming events the impact angle b was in the range from a few to 121, so they were

handled by the method outlined in Section 4.1. In the figures of the following discussion t ¼ 0 s represents the time

instant of the impact event studied. Figs. 8 and 9 show the first two bottom impacts for incoming waves with H=D ¼ 4:9
and Tðg=DÞ1=2 ¼ 21:5. The first event is characterized by b ¼ 3:6 � and V0 ¼ 0:428

ffiffiffiffiffiffiffi
gD
p

, and the second by b ¼ 11:5 �

and V0 ¼ 0:848
ffiffiffiffiffiffiffi
gD
p

. The area of the cavity entrapped during the first impact is 1:5D2 while it is eight times larger in the

second impact. Due to the cavity entrapment the Euler number Eu ¼ pa=rV2, governing the compressibility of the inner

air, becomes an additional parameter of the problem. Taking the impact velocity V0 as reference velocity V, for the first

and second impacts Eu ’ 38 and 10, respectively. The limited value of Eu combined with a larger area induces a quick

formation of a jet flow in the second impact, not observed during the first event. The different features between the two

impacts are responsible for loads of different magnitude on the platform (see top parts of Figs. 8 and 9).

Both events are characterized by a sudden peaked increase of the pressure due to the impact. During the first impact,

the initial free-surface configuration shown refers to the time instant when the local analytical solution is patched with

the BEM solution, i.e. t ¼ timp þ Dt; so the related pressure curve coincides with the analytical pressure solution

ptheo ¼ rV0

ffiffiffi
x
p
ðdc=dtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c� x
p

of the Wagner-type problem mentioned in Section 4.1. The value of the pressure peak,

obtained by evaluating the composite solution between the inner and outer (given by ptheo) solutions, could play a role

in influencing the local structural design. However, due to the small time scales involved, in practical applications the

pressure impulse is of more concern than the pressure maximum value. After the impact the bottom pressure reduces
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rapidly and its evolution is governed by the cavity motion. The pressure oscillates in time, following the volume

pulsation of the entrapped cavity with a period much smaller than the wave period (see later Fig. 14).

The first configuration of the second slamming event refers to the full BEM solution, i.e. t4timp þ Dt. The

corresponding pressure distribution in the impact zone compares well with the local analytical Wagner-type pressure.

As time advances the pressure preserves the peaked behavior due to the inward jet. The pressure peak occurs near the jet

root and exceeds the pressure inside the cavity. The formation of a jet is numerically challenging in terms of

convergence. In the present studies, refining the discretization shows that the global solution remains practical identical

but locally the predicted jet speed tends to reduce, lowering the pressure. This represents an error source in the

hydroelastic problem, because the pressure is the link between the fluid and structural problems.

4.2.2. Hydroelastic effects

Here, the fluid–structure coupling is described during the two bottom impacts. The structural features of the VLFS

bottom are modeled in the wave-side region by introducing a beam equivalent to the stiffened bottom plating with

longitudinal stiffeners between two transverse stiffeners. Fig. 10 shows their arrangement and the section of the

equivalent beam with the position of the neutral axis. Only the equivalent beam at the upwave end is considered, while

the rest of the VLFS bottom is assumed rigid. The beam has a length Lb ¼ 5m and is clamped at the ends. The case

study considers a structural mass per unit length and breadth 240:7kg=m2, beam bending stiffness EI ’ 27:5MNm2=m
and no structural damping. Three solution strategies are considered: (a) the pressure is evaluated assuming a rigid

platform bottom; (b) an infinite-frequency added-mass correction is introduced to include the effect of water [details can

be found in Faltinsen et al. (2004)]; (c) a full-hydroelastic analysis is performed, as described in Section 4.1.

Figs. 11 and 12 show the time evolutions of the pressure inside the cavity and of the maximum stresses on the beam

for the two events. At any time instant the maximum tension and compression stresses are evaluated at the beam section

with the largest magnitude of the bending moment: they correspond, respectively, to the maximum positive and

negative stress relative to the sectional neutral axis. The evolution of the cavity pressure for the two impacts is not

affected by a full-hydroelastic analysis. This is because in both cases the cavity disappears relatively quickly from the

elastic portion of the bottom and the beam is fully wetted after ’ 0:21 and ’ 0:2 s, respectively. The first impact shows

two time scales in the stress evolution. On a large time scale, the stresses follow the cavity-pressure oscillations in a

quasi-steady manner. The oscillation period estimated for the cavity is consistent with the value T1 ’ 0:72 s predicted
for the highest natural period by a simplified analysis [see Faltinsen et al. (2004)]. The high-frequency oscillations

in the stress curves are related to first-mode vibrations. The wet natural period predicted by the approximate

hydroelastic study ð’ 0:073 sÞ is slightly larger than the value predicted by the full-hydroelastic analysis ð’ 0:053 sÞ.
Both are clearly higher than the dry natural period ð’ 0:018 sÞ. The comparison of solutions (b) and (c) suggests a

negligible hydroelastic effect. In fact, the stress amplitudes are not much modified by the hydroelastic coupling. This is

due to the wetting time of the beam ð�0:24 sÞ being large relative to the highest wet natural period, and to the absence of

sudden changes in the excitation on the time scale of the wet natural period. The maximum absolute value reached by

the stresses ð�200MPaÞ is comparable with the allowable-stress limit for high-strength steel (about the 70% of the yield

stress �3202360MPa).

The second bottom-slamming event shows different features. Within the examined time interval the cavity pressure

increases monotonically (see left plot of Fig. 12), because of the larger highest natural period of the cavity ðT1 ¼ 2:28 sÞ.
As a result the cavity evolution is ‘driven’ by the inward jet. Initially the stresses obtained with the methods a, b and c
zn
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Fig. 10. Qualitative sketch: stiffeners arrangement for the bottom plate of a VLF platform and section of the equivalent beam.

Left: transversal view. Right: longitudinal view. The dimensions are in millimeters. The vertical position of the beam-section neutral

axis is zn ’ �0:0977m in the reference frame with the vertical origin at the middle of the beam section.



ARTICLE IN PRESS

0

0.4

0.8

1.2

1.6

t(s) t(s)

(p
-p

a)
/p

a

rigid bottom
hydroelastic solution

-400

-300

-200

-100

0

100
σ m

ax
(M

Pa
)

(compres.)

(tension)

without added-mass correction (a)
with added-mass correction (b)
fully hydroelastic solution (c)

0 0.2 0.4 0.6 0 0.2 0.4 0.6

Fig. 12. Fully nonlinear investigation: second bottom impact. Left: relative pressure variation inside the cavity. Right: maximum

tension and compression stresses on the beam.

0

0

0.4

0.8

t(s) t(s)

rigid bottom

(p
-p

a)
/p

a

hydroelastic solution

0

-200

-150

-100

-50

0

50

σ m
ax

(M
Pa

)

(compres.)

(tension)

without added-mass correction (a)
with added-mass correction (b)
fully hydroelastic solution (c)

0.2 0.4 0.6 0.2 0.4 0.6

Fig. 11. Fully nonlinear investigation: first bottom impact. Left: relative pressure variation inside the cavity. Right: maximum tension

and compression stresses on the beam.

M. Greco et al. / Journal of Fluids and Structures 25 (2009) 406–419 417
show a similar behavior even though with different high-frequency behavior. As time goes on, the stresses of the full-

hydroelastic approach tend to oscillate around values smaller than those predicted by the simplified approaches.

This suggests that hydroelasticity matters when large jet formation occurs. For the case examined, there are no visible

effects on the free-surface evolution while the pressure on the platform bottom is clearly affected by the structural

deflections (see Fig. 13). The stress level for this event remains still high and close to the allowable stress for the

structural integrity.

4.2.3. Scaling effects

When cavity entrapment occurs the Euler number should be considered to achieve the correct scaling. Experimentally

this is hard to achieve and only Froude scaling is satisfied. The limits of the experimental analysis have been investigated

numerically by studying platform drafts in the range ½0:0135m; 1:5m�. As expected, the cavity pressure does not scale

with Froude number and its full-scale values can be substantially overestimated, in the considered case, by Froude

scaling. For example, for the first bottom impact caused by incoming waves with H=D ¼ 4:9 and Tðg=DÞ1=2 ¼ 21:5, the
maximum pressure predicted for a VLFS with draft D ¼ 1:5m is nine times smaller than the value obtained by simply

Froude scaling to D ¼ 1:5m the estimate found for D ¼ 0:027m. Froude scaling leads to a model scale Eu larger than

the corresponding full-scale value and this may be responsible for physical phenomena which would not occur in reality.

For instance, at model scale the local pressure is higher than at full scale relative to the dynamic pressure associated

with slamming, so bottom-slamming events could occur without air entrainment while at full scale air would be

entrapped [as seen in the example given by Greco et al. (2003)]. This analysis does not account for the effect of the

platform motions.
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The Fourier analysis of the cavity pressure time series for the different cases shows that for small D, the

frequencies of the first and second components are roughly consistent with the scaling law predicted by Bagnold (1939)

for an oscillating air bubble under a linear assumption (linear scaling: o
ffiffiffiffi
S
p

=V0�
ffiffiffiffiffiffiffiffiffi
gEu
p

, with o the pulsation frequency

of the bubble). The relative pressures of the cavities do not satisfy the corresponding law (linear scaling:

pmax=rV2�
ffiffiffiffiffiffiffiffiffi
gEu
p

, with pmax being the amplitude of pressure oscillations), and they scale roughly with the ambient

pressure (see Fig. 14). For D ¼ 1:5m, none of the previous scaling laws are satisfied. From the results it is not

obvious how to transfer model-scale results into full-scale information. This requires a deeper investigation, left to a

future activity.
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5. Conclusions

Bottom-slamming phenomena were investigated in connection with Very Large Floating Structures. Head-sea

conditions were assumed, and the problem was solved numerically using 2-D potential-flow theory. The coupling

between (1) global behavior of the platform and (2) local phenomena was neglected and (1) and (2) were studied as

separated problems. This becomes questionable when the VLFS motions are not small. In such circumstances (1) and

(2) must be investigated as coupled problems, as discussed by Greco et al. (2008). A linear-global solver was adopted to

investigate the global behavior of the platform and to guide the choices within the analysis of slamming events

performed through a fully nonlinear strategy. The main features of the slamming events have been identified and

studied in terms of flow evolution and induced pressures on the platform bottom. Hydroelastic effects were examined

and their importance has been highlighted in the case of large jets after the slamming. The stress levels induced by

slamming appear high and suggest a concern for the local integrity of the structure. The analysis of air cushion

phenomena highlighted the challenges in transferring model-scale results to full scale.
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